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The lattice dynamics and the temperature variation of the volume GriJneisen function and bulk modulus of 
erbium have been calculated with the nearest-neighbour central-interaction model of Srinivasan & 
Ramji Rao [Inelastic Scattering of Neutrons, IAEA, Vienna, (1965), 1,325-342]. The even moments of the 
frequency distribution function of erbium have also been calculated. The agreement between the calculated 
in and that obtained from thermal data is good. The calculated Bs values agree with those obtained from 
the measured elastic constants of Fisher & Dever [ Trans. Metall. Soc. A IME, (1967), 239, 48-57] at various 
temperatures up to 298 K, to within 2%. 

1. Introduction 

Erbium is a hexagonal rare-earth metal with a c/a 
ratio of 1"573. The second-order elastic (SOE) constants 
of Er from 81 to 298 K were measured by Fisher & 
Dever (1967). Fisher, Manghnani & Kikuta (1973) 
measured the SOE constants and the pressure deriva- 
tives of Er at 298 K. Gschneidner (1964) reported a 
value of 1.17 for the thermal 7H of Er. Ramji Rao & 
Menon (1973) calculated the lattice dynamics and 
thermal expansion of Er using Keating's (1966) 
approach. Ramji Rao (1975a) calculated the third- 
order elastic (TOE) constants and pressure derivatives 
of the SOE constants of Er at 298 K using the nearest- 
neighbour central-force model (C.F. model) of Ramji 
Rao & Srinivasan (1968, 1969). The object of the pres- 
ent paper is to calculate the thermal expansion and 
lattice dynamics of Er with the C.F. model of 
Srinivasan & Ramji Rao (1965). The Anderson- 
Griineisen (A-G) parameter, 6, of Er has been 
evaluated from the calculated TOE constants of the 
C.F. model by the procedure suggested by Ramji Rao 
(1974). The bulk moduli of Er at various temperatures 
have been evaluated using Anderson's (1966) theory 
and compared with those obtained from the experi- 
mental elastic constants data of Fisher & Dever 
(1967). 

2. Lattice dynamics 

The normal mode frequencies of the lattice vibrations 
are obtained as solutions of the determinant equation: 

q 

q 

[~ k ' l  are the c°upling c°efficients °f the dynamical 

matrix. The expressions for the coupling coefficients of 
a homogeneously deformed ideal h.c.p, lattice with 
nearest-neighbour central interaction were evaluated 

by Srinivasan & Ramji Rao (1965). The central interac- 
tion potential has the form: 

a b 
q>(r) = - r~ + ~ .  (2.2) 

Fig. l(a) and (b) shows the theoretical dispersion 
curves in the [0001] and [0110] directions for Er. The 
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Fig. I. (a) Theoretical dispersion curves for erbium in the [0001] 
direction. (b) Theoretical dispersion curves for erbium in the 
[0110] direction. 
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experimental dispersion relations for erbium are not 
available in the literature. However, the neutron in- 
elastic scattering measurements of the phonon disper- 
sion relations of terbium and holmium were made by 
Glyden Houman & Nicklow (1970) and Nicklow, 
Wakabayashi & Vijayaraghavan (1971) respectively. 
To make a comparison, the lattice frequencies of Er 
at the zone centre (F) and the zone boundaries (A and 
M) are obtained by extrapolating the experimental 
frequencies of Tb and Ho. This is a reasonable surmise 
as these rare-earth metals belong to the same group. 
The lattice frequencies calculated on the present model 
agree well with the extrapolated values. The calculated 
and extrapolated frequencies of Er together with the 
experimental frequencies of Tb and Ho in the 1-0001] 
and [01]-0] symmetry directions are given in Table 1. 
The maximum discrepancy between the calculated and 
extrapolated values in the [0001] direction occurs for 
the F6 frequency and is about 129/o. In the [01i0] 
direction the maximum discrepancy between the cal- 
culated and extrapolated frequencies is 89/0 and this 
occurs for M£ and M~- frequencies. The general pattern 
of the dispersion curves of Er conforms with that of the 
other hexagonal metals. The frequencies of Er obtained 
by Ramji Rao & Menon (1973) using Keating's (1966) 
approach are higher than the frequencies obtained on 
the C.F. model. 

Table 1. The experimental frequencies of terbium and 
holmium and the extrapolated and calculated frequencies 
of erbium in the [0001] and [01]-0] directions; o9 in 

1013 Hz 
(a) [0001] direction 

Tb 
Ho 
Er 
(extrapolated) 
Er 
(calculated) 

(b) [0110] direction 

Tb 
Ho 
Er 
(extrapolated) 
Er 
(calculated) 

LO and TO and 
LO LA TO TA 

(Fj') (A,) (fig) (A3) 
2"042 1"533 1"144 0"817 
2"136 1"609 1"219 0"842 

2-180 1"646 1"257 0"855 

2"202 1"557 1"101 0-778 

LO LA TA(Y) TO(Z) TA(Z) 
(M2) (M~) (M,~) (M~) (M~7) 
1-916 1.822 0.999 1.816 1.100 
1.935 1-910 1.037 1-916 1.232 

1"945 1"955 1-056 1"967 1"298 

2"108 2"010 1"101 1-798 1"271 

~' (o~)  = co Od' 

1 009 
7"(co)- o) ad'" (3.1) 

Here e' is a uniform areal strain perpendicular to the 
hexagonal axis and g' is a uniform longitudinal strain 
parallel to the hexagonal axis. The effective Grtineisen 
function 91(T) is defined as the weighted average of the 
individual G.P.'s. 

y'(q,j)Cv(q,j) 
9.].(T) = q'j  

Cv(q, j) 
q,J 
y"(q,j)Cv(q,j) 

9~(T) = q' j  (3.2) 
X Cv(q,J) 
q,J 

where q is the wave vector, j is the polarization index 
and Cv(q,j) is the contribution of a single normal mode 
of frequency co to the specific heat of the lattice. The 
effective Grfineisen functions 91(T) are used to describe 
the temperature variation of the linear expansion 
coefficients c~± and C~ll of the hexagonal crystal. 

V0~.l. = [(S11 + Slz)'71(T)+ S13']~I(T)]Cv 
= ~/~r( T)Cvz, 

V0~I[ = [2S  1 3 9 1 ( T ) +  $33~(T)]C v 
= 9~r(T)Cox. (3.3) 

The effective Grtineisen function yl(T) tends to the 
limit ,71(0) at high temperatures and to the limit 
91(-3) at absolute zero. Sii are the elastic compliance 
coefficients, V is the molar volume and 7. is the iso- 
thermal compressibility. ~r(T) and ,7~lr(T) are the 
average Grtineisen functions used by Brugger & Fritz 
(1967). From (3.3) we get 9~ r and ~r  as 

9Br(T) = [ ( S l l  + $12)'~(T) + $139~(T)], 
Z 

, ~ r ( T  ) = [2S13"~(T)+ $33"~(T)] (3.4) 
Z 

At low temperatures the effective Grtineisen functions 
approach the limits 

7 0 ,  qg)Vf 3(O,q)) do  

,7.]_(-3)= 
V f 3(O, qg)dQ 

J 

3. Thermal expansion 
We now define the generalized Grtineisen pa.rameters 
(G.P.'s) for the normal-mode frequencies of a hexagonal 
crystal. 

f ~ 7Y(O, cp)V]-3(O,q~)d Q 
j=l 

f 
(3.5) 
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At low temperature the G.P.'s of the elastic waves 
determine the anisotropic thermal expansion. Vj(0, q~) 
is the wave velocity of the elastic wave of polarization 
index j propagating in the direction (0, qg); ~,j and y)' are 
the G.P.'s of the acoustic wave. The generalized G.P.'s 
of the elastic waves can be evaluated from a knowledge 
of the TOE constants of the material using the pro- 
cedure suggested by Ramji Rao & Srinivasan (1968, 
1970). In the hexagonal crystals, the G.P.'s and the 
acoustic wave velocities depend only on 0 and are 
independent of the azimuth (p. Table 2 gives the wave 
velocities and the G.P.'s for the acoustic waves prop- 
agating at different angles 0 to the Z axis in the 
X - Z  plane. The TOE constants of Er calculated by 
Ramji Rao (1975a) using the C.F. model have been 
used in evaluating 9L. The calculated values of 
9]_( - 3) and 9~( -  3) for Er are 0"85 and 0.77 respectively. 
The low-temperature limits of ~Br and ~1 r are 0.28 and 
0.27 respectively. The low-temperature limit of the 
volume lattice thermal expansion of Er is given by 

9L =29s, r ( -  3) + 9~r(- 3) =0 .83 .  (3.6) 

Blackman's (1957) procedure is adopted to calculate 
9*(T) as a function of temperature. A grid of equally 
spaced points in the irreducible volume of the Brillouin 
zone is chosen for the wave vector q. A program is 
written for the IBM 370/155 computer to calculate the 
eigen-frequencies of the dynamical matrix at 84 points 
evenly distributed over .~ of the volume of the 
Brillouin zone for the following sets of e' and e". 

(1) e'--0, e"--0;  (2) e'=0"001, e " = 0 ;  
(3) e ' = - 0 " 0 0 1 ,  e " = 0 ;  (4) e '=0,  e"=0"001; 
(5) e' = 0, e" = - 0-001. 

The determinant equation (2.1) is used to calculate 
the unstrained and the strained frequencies and hence 
,/ and y" for the different lattice wave vectors. The 
frequencies co(l) for the first set of values of e' and e" 
give the frequencies of the unstrained lattice. The 
G.P.'s for any frequency are calculated as 

y , _  1 I-co(2)- co(a)], 
co(l) 0.002 

y , , _  1 [co(4)- co(5)] (3.7) 
co(l) 0.002 

The range of frequencies from 0 to comax is divided into 
small intervals (Aco=0-2 × 1013 Hz) and the number of 
frequencies in each interval is counted. A histogram is 
drawn for g(co) versus co and is replaced by a smooth 
curve enclosing unit area with the co-axis. This gives 
the normalized frequency distribution curve for Er 
and is shown in Fig. 2. In the frequency distribution 
curve of Er, there are two peaks centred around 1-3 x 
1013 and 2-1 × 1013 Hz. There is a valley with a min- 
imum around 1"9x 1013 Hz. In the low-frequency 
region the distribution curve is parabolic according to 
the equation g(co)= Ca) 2. The constant C is determined 

3 

from knowledge of the average value of ~ V~3(0,q~) 
j = l  

where V~(0, q~) is the acoustic wave velocity of the j th 
mode propagating in the direction (0,q0). The even 
m o m e n t s  (]AE,,/A4,]A6) of the frequency distribution 
function for Er on the present model have been cal- 
culated and are 

~2 =2"45 x 1026 S - 2  , 

#4=7"48 x 1052 s - 4 ,  

#6=25"91 x 1078 s -6. (3.8) 
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Fig. 2. Normalized frequency distribution function for erbium. 

Table 2. Wave velocities and generalized G.P.'s for the acoustic waves in erbium 
at different angles 0 to the hexagonal axis 

The wave velocities and the G.P.'s are calculated using the SOE constants and the calculated TOE constants at 298 K. 
The velocities are in units of 10 a a/2 cm sec-1. 

5 0"97 1"01 3"08 0"56 0"02 1"90 0-56 - 0"03 1-95 
15 0"97 0-95 3-05 0"57 0"37 1.50 0"56 0"06 1-80 
25 0"96 0-89 2-94 0"58 0"90 0"91 0-56 0-22 1"51 
35 0"96 0"88 2"68 0"59 1"34 0-45 0"56 0"43 1"13 
45 0"95 1"01 2"20 0"59 1"47 0"36 0"56 0"68 0"69 
55 0-96 1"28 1"55 0"59 1"23 0"67 0"56 0"92 0"25 
65 0"96 1"62 0"89 0"58 0-74 1"20 0"56 1.13 -0-14 
75 0"97 1"90 0-39 0"57 0.21 1"72 0-56 1.29 -0-43 
85 0"98 2"05 0-12 0"56 -0"13 2"05 0"56 1.38 -0-59 
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The value of 0oo, the high-temperature limit of the 
Debye temperature for Er as calculated from kt2 has 
the value 154 K. 
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Fig. 3. ~'(e)) and ?"(o9) versus co curves for erbium. 
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Fig. 5. Variation of bulk modulus of erbium with temperature. 
• denotes experimental points. 

The individual gammas 7' and 7" for the various 
normal-mode frequencies in each frequency interval 
of width Ago =0.2 x 1013 Hz are noted and the average 
values p' and ~" of these G.P.'s are calculated for each 
interval. The p'(co) and ~"(co) versus co curves are shown 
in Fig. 3. The effective Grtineisen functions p[(T) and 
p~l(T) at any temperature T are then evaluated from 

~,i( T) = f ~maxy"(o)g(~°)a(o~, T) dco 

F g(co)o'(o), r)dco 

f~ max ~"(~)g(C.D)O'(~,  T ) d o  

~(T)  - 
f:maXg(w)a(co, T)dw 

(3.9) 

where a(co, T) is the Einstein specific heat function. 
The Brugger gammas at different temperatures are 
evaluated from (3.4) and hence the volume gamma as 

~7~(T)= 2~_r(T) + ~r(T). (3.10) 

The variation of ~(T)  with temperature is shown in 
Fig. 4. ~(T)  increases rapidly up to 100 K; then be- 
comes nearly flat and finally attains the high-temper- 
ature limit 1-23. This agrees well with the ~H value, 
1-17, from thermal data reported by Gschneidner 
(1964). 

4. Anderson-Grfineisen parameter and bulk modulus 
of erbium 

The Anderson-Grtineisen (A-G) parameter of Er 
has been calculated from its TOE constants obtained 
on the C.F. model using the procedure sflggested by 
Ramji Rao (1974) and has the value 2.28. This agrees 
well with the value 2"31 obtained from the experimental 
pressure derivatives data of Er by the method indicated 
by Ramji Rao (1975b). From theoretical considerations 
Anderson (1966) derived the relation which gives the 
temperature dependence of the bulk modulus as a func- 
tion of the specific heat and atomic volume V. 

dB~ 6yC v (4.1) 
dT V " 

Here 7 is the usual Grtineisen constant. The integrated 
form of Bs is then obtained as 

Boo is the bulk modulus at absolute zero, Vo is the 
specific volume per 'average' atom at 0 K and Cp is 
replaced by Cv. The theoretical curve showing the 
variation of the bulk modulus of Er with temperature 

t ~ T  

is obtained from (4.2)and is shown in Fig. 5. I - C v d T  
Jo  
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is the internal energy content of a solid at any temper- 
ature T and is tabulated (American Institute of Physics 
Handbook, 1963) as a function of temperature, knowing 
the characteristic temperature of the solid. The internal 
energy content of Er is obtained by treating it as a 
Debye solid. The values of the parameters Vo, 0, 0o and 
Boo for Er are given in Table 3. The values of Vo, 0 and 
0o correspond to those at room temperature. The 
agreement between the calculated Bs values and those 
obtained from the measured elastic constants (Fisher 
& Dever, 1967), at various temperatures up to 298 K, 
is good to within 2%. 

Table 3. Values of  the constants of erbium 
used in the present calculations 

Debye 
temperature Boo 

0o(K) Vo 0 (101~ dyne scm-z) 
191 18.45 9.064 4.63 

5. Discussion 

The close agreement between the calculated ~n and 
the thermal ~n, the calculated and experimental A-G 
parameters and the calculated and experimental Bs 
values of Er amply justifies the use of the C.F. model 
to explain the thermal and mechanical properties of 
this rare-earth metal. The calculated pressure deriva- 
tive OC44/ap is positive for Er, from which it may be 
inferred that the pressure-induced phase transforma- 
tion from h.c.p, to b.c.c, structure is not possible in this 
metal. The G.P.'s in Er (both 7' and 7") have small 
values, which is a characteristic feature of the h.c.p. 
rare-earth metals. The agreement of the frequencies of 
Er calculated on the C.F. model in the symmetry 
directions with the extrapolated frequencies is better 

than that obtained by Ramji Rao & Menon (1973) 
using Keating's (1966) approach. 

One of us (A.R.) is grateful to the Council of 
Scientific and Industrial Research, Government of 
India for the award of a research fellowship. 
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The Structure of NaTaOa by X-ray Powder Diffraction 
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The structure of NaTaO3 has been determined from X-ray powder diffraction spectra by measuring the 
intensities of the difference reflexions caused by the deviations from the ideal cubic perovskite structure. 
The structure is compared with that determined on the basis of single-crystal measurements. 

1. Introduction 

In general, it is much easier to obtain a powder 
specimen than a truly untwinned single crystal. On 
the other hand, the powder method suits only the 
simplest structures because of the overlap of adjacent 
Bragg peaks in more complex structures. Rietveld 
(1969). has, however, developed a refinement method 

for neutron powder diffraction patterns. In this method 
the detailed shape of the powder pattern is used to 
decide between various structural models. This method 
is a structure refinement technique, i.e. the structure 
has already been solved approximately by X-ray or 
other techniques. 

In this work, the structure of NaTaO3 is determined 
by the X-ray diffraction powder method by making 


